[100% Off] Complete Rag Bootcamp: Build, Optimize, And Deploy Ai Apps
Learn to build intelligent, retrieval-powered AI systems using LangChain, LlamaIndex, and real-world RAG workflows
What you’ll learn
- Design and Build a Retrieval-Augmented Generation (RAG) System Understand how to integrate large language models (LLMs) with retrieval pipelines
- Implement Embeddings and Vector Databases for Semantic Search Learn how to generate and store embeddings using tools like OpenAI
- ChromaDB
- or Pinecone
- Develop an End-to-End AI Knowledge Assistant Build and deploy a functional AI chatbot using frameworks like LangChain
- Streamlit
- and FastAPI
- Evaluate and Optimize AI Performance Metrics Measure your assistant’s accuracy
- relevance
- and user experience using key performance metrics
Requirements
- Basic Python Programming Skills Familiarity with Python syntax and libraries (like pandas
- requests
- or json) will make it easier to follow along with code demonstrations.
- Curiosity About AI and LLMs A foundational understanding of how Large Language Models (LLMs) like ChatGPT or Llama work conceptually will be helpful
- but not mandatory — everything is explained in simple terms.
- Access to a Computer with Internet You’ll need a computer capable of running Python and Jupyter notebooks or VS Code
- plus an internet connection to install packages and access APIs.
- Free or Trial Accounts for Tools Some hands-on labs will use free-tier APIs or tools such as OpenAI
- LangChain
- ChromaDB
- and Streamlit — setup instructions are provided in the course.
Description
“This course contains the use of artificial intelligence”
Unlock the full potential of Retrieval-Augmented Generation (RAG) — the framework behind today’s most accurate, data-aware AI systems.
This comprehensive bootcamp takes you from the fundamentals of RAG architecture to enterprise-level deployment, combining theory, hands-on projects, and real-world use cases.
You’ll learn how to build powerful AI applications that go beyond simple chatbots — integrating vector databases, document retrievers, and large language models (LLMs) to deliver factual, explainable, and context-grounded responses.
What You’ll Learn
-
The core concepts of Retrieval-Augmented Generation (RAG) and why it’s transforming AI.
-
Building RAG pipelines from scratch using LangChain, LlamaIndex, and FAISS.
-
Implementing hybrid search (keyword + vector) for smarter retrieval.
-
Creating multi-modal RAG systems that process text, images, and PDFs.
-
Building Agentic RAG workflows where intelligent agents plan, retrieve, and reason autonomously.
-
Optimizing RAG performance with prompt tuning, top-k selection, and similarity thresholds.
-
Adding security, compliance, and role-based governance to enterprise RAG pipelines.
-
Integrating RAG into real-world workflows like Slack, Power BI, and Notion.
-
Deploying complete front-end and back-end RAG systems using Streamlit and FastAPI.
-
Designing evaluation metrics (semantic similarity, precision, recall) to measure retrieval quality.
Tools and Technologies Covered
-
LangChain, LlamaIndex, FAISS, OpenAI API, CLIP, Sentence Transformers
-
Streamlit, FastAPI, Pandas, Slack SDK, Power BI Integration
-
Python, LLM Prompt Engineering, and Enterprise Security Frameworks
Real-World Hands-On Labs
Each section of the course includes interactive labs and Jupyter notebooks covering:
-
RAG Foundations – Build your first retrieval + generation pipeline.
-
LangChain Integration – Connect document loaders, vector stores, and LLMs.
-
Performance Optimization – Hybrid, MMR, and context tuning.
-
Deployment – Launch full RAG applications via Streamlit & FastAPI.
-
Enterprise Use Cases – Finance, Healthcare, Aviation, and Legal systems.
Who This Course Is For
-
Developers and Data Scientists exploring AI application design.
-
Machine Learning Engineers building context-aware LLMs.
-
Tech professionals aiming to integrate retrieval-augmented AI into products.
-
Students and researchers eager to understand modern AI architectures like RAG.
Outcome
By the end of this course, you’ll confidently design, implement, and deploy end-to-end RAG systems — combining the power of LLMs with enterprise data for smarter, explainable, and production-ready AI applications.








